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Abstract—Because of strict response-time constraints, efficiency of top-k recommendation is crucial for real-world recommender

systems. Locality sensitive hashing and index-based methods usually store both index data and item feature vectors in main memory,

so they handle a limited number of items. Hashing-based recommendation methods enjoy low memory cost and fast retrieval of items,

but suffer from large accuracy degradation. In this paper, we propose product Quantized Collaborative Filtering (pQCF) for better trade-

off between efficiency and accuracy. pQCF decomposes a joint latent space of users and items into a Cartesian product of low-

dimensional subspaces, and learns clustered representation within each subspace. A latent factor is then represented by a short code,

which is composed of subspace cluster indexes. A user’s preference for an item can be efficiently calculated via table lookup. We then

develop block coordinate descent for efficient optimization and reveal the learning of latent factors is seamlessly integrated with

quantization. We further investigate an asymmetric pQCF, dubbed as QCF, where user latent factors are not quantized and shared

across different subspaces. The extensive experiments with 6 real-world datasets show that pQCF significantly outperforms the state-

of-the-art hashing-based CF and QCF increases recommendation accuracy compared to pQCF.

Index Terms—Recommendation, product quantization, collaborative filtering, maximum inner product search

Ç

1 INTRODUCTION

RECOMMENDER systems aim at finding a short list of items
to be consumed with the highest chance. They have

been widely used in many online services for dealing with
information overload. Matrix factorization (MF) is one of
the most popular recommendation methods, even with the
recent development of deep-learning-based recommenda-
tion. By using advanced loss functions, MF can show very
competitive recommendation performance [1], [2]. More-
over, MF has been extended for incorporating side informa-
tion by applying deep learning for processing the side
information [3], [4], [5]. Their recommendation performance
can be comparable to other deep-learning-based recommen-
dation methods, such as DeepFM [6] and XDeepFM [7].
Therefore, in this paper, we only focus on the MF-based rec-
ommendation models. Another reason of this choice is that
the MF models are more efficient to train and predict.

In MF modes, both users and items are represented by
points in a joint latent space. The score of matching between
a user i represented by ppi and an item j represented by qqj is
estimated by the inner product hppu; qqji ¼ ppTu qqj. A higher
score indicates user’s higher preference for the item. Given
a user, the top-k recommendation task selects k items with

the largest scores among N candidate items. The time com-
plexity is Oðk log kþNKÞ, where K is the dimension of
latent space. The massive growth of users and items in
online services gives rise to the challenge of efficient top-k
recommendation. In most recommender systems, user inter-
est evolves over time, so that it is not a good choice to pre-
compute top-k items, and then store them into a database.
This paper studies the scalability of the top-k commenda-
tion based on matrix factorization.

To instantly generate recommendation, locality-sensitive
hashing (LSH) and index-based methods have been widely
used in practical scenarios such as news recommendation [8]
and movie recommendation [9]. Note that the inner product
generally violates the triangle inequality, so maximum inner
product search should be transformed to nearest neighbor
search [10], [11], [12]. Index-based methods, such as KD-
tree and metric tree [13], are usually better than LSH for real
data because of the usage of data distribution. However,
both LSH and index-based methods are required to perform
a fine re-ranking step based on exact distance, so that in
addition to index structure, item feature vectors are also
stored in main memory. This constraint restricts the number
of items to handle. Recently, hashing-based recommenda-
tion methods are proposed for efficient collaborative filter-
ing [14], [15], [16], [17], [18] with limited memory usage.
These algorithms directly learn short binary codes from rat-
ing/preference data represented by a user-item matrix RR,
and efficiently estimate preference scores via hamming dis-
tance. However, these algorithms suffer from challenge of
optimization and large quantization errors.

Motivated by much lower approximation errors of prod-
uct quantization (PQ) than hashing [19], [20], in this paper,
we propose product Quantized Collaborative Filtering
(pQCF) to construct short codes for users and items. pQCF
decomposes the joint space of users and items formed by

� D. Lian and E. Chen are with the School of Computer Science and Technol-
ogy, University of Science and Technology of China, Hefei 230052, China.
E-mail: {liandefu, cheneh}@ustc.edu.cn.

� X. Xie is with Microsoft Research Asia, Beijing 100080, China.
E-mail: xingx@microsoft.com.

� H. Xiong is with the Department of Management Science and Information
Systems, Rutgers, The State University of New Jersey, Newark, NJ 07102
USA. E-mail: hxiong@rutgers.edu.

Manuscript received 30 Apr. 2019; revised 18 Nov. 2019; accepted 31 Dec.
2019. Date of publication 6 Jan. 2020; date of current version 5 Aug. 2021.
(Corresponding author: Defu Lian.)
Recommended for acceptance by M. Wang.
Digital Object Identifier no. 10.1109/TKDE.2020.2964232

3284 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 33, NO. 9, SEPTEMBER 2021

1041-4347 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on December 17,2021 at 05:48:36 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0002-3507-9607
https://orcid.org/0000-0002-4835-4102
https://orcid.org/0000-0002-4835-4102
https://orcid.org/0000-0002-4835-4102
https://orcid.org/0000-0002-4835-4102
https://orcid.org/0000-0002-4835-4102
mailto:liandefu@ustc.edu.cn
mailto:cheneh@ustc.edu.cn
mailto:xingx@microsoft.com
mailto:hxiong@rutgers.edu


matrix factorization into a Cartesian product of lower-
dimensional subspaces, and learns clustered representation
within each subspace, as demonstrated the left (training)
part of Fig. 1. As a result, a latent feature vector of either
user or item is represented by a short code composed of
subspace cluster indexes. The representation capacity is
then much larger than binary Hamming space. For the sake
of illustration, these cluster indexes are represented by one-
hot indicators in Fig. 1. In fact, each cluster index can be
more compactly encoded using logC bits if there are C clus-
ters in a subspace. By constructing lookup tables between
cluster centers within each subspace, the preference score
can be efficiently computed with a few additions, as shown
in the right (prediction) part of Fig. 1. Therefore, time con-
sumption is comparable to hamming distance in hashing-
based CF. The storage cost is also close to hashing-based
CF, with a few extra spaces for storing lookup tables.

It is straightforward to apply PQ for quantizing user latent
factors and item latent factors separately. However, as evi-
denced by empirical results, this quantizer can be significantly
improved since PQ is based on the euclidean distance rather
than the inner product [19]. Though PQ is subsequently
extended for maximum inner product search [21], quantiza-
tion is only performed over item latent factors learned from
matrix factorization. Different from this extension, pQCF only
takes rating/preference data as input and unifies quantization
and the learning of latent factors into a joint framework. This
can be better tailored for collaborative filtering with only rat-
ing data1 provided. In spite of this, pQCF can be still effec-
tively optimized using block coordinate descent. The time
complexity of optimization in each iteration is also linearly
proportional to the number of ratings, not higher than the
matrix factorization algorithms.

To summarize, the main contributions are four-fold:

� Wepropose product Quantized Collaborative Filtering
to learn semi-structured latent factors for users and

items from rating data. This essentially extends prod-
uct quantization from the euclidean space to the inner
product space, and strikes a better balance between
efficiency and accuracy of item recommendation.

� We propose an efficient block coordinate descent algo-
rithm for parameter learning. The time complexity of
each iteration is only linearly proportional to the num-
ber of ratings. We also reveal how pQCF integrates the
learning of latent factors into quantization.

� WeextendpQCF to an asymmetric version–QCF,where
only item latent factors are quantized anduser latent fac-
tors are shared across different subspaces.QCF is shown
to dramatically increase recommendation accuracy due
to approximating the inner productmore precisely.

� We evaluate the proposed algorithms with six real-
world explicit or implicit datasets. The empirical
results demonstrate the significant superiority of the
proposed algorithms to the state-of-the-art hashing-
based CF methods with comparable retrieval time
and a few extra memories. pQCF also achieves 30x
speedup for top-k recommendation tasks with negli-
gible accuracy degradation.

2 RELATED WORK

This work targets for striking a better balance between effi-
ciency and accuracy of item recommendation. We first
review recent advance of non-sequential recommendation
models in improving recommendation accuracy. Then, we
turn to recommendation efficiency. Since the preference
score is estimated by the inner product between latent fac-
tors, it is closely related with the research of maximum
inner product search (MIPS) given latent feature vectors of
users and items. It is also closely related with hashing-based
collaborative filtering given users’ rating data.

2.1 Recommendation Models

The recent advance of non-sequential recommender sys-
tems can be classified into three categories. The first

Fig. 1. The framework of product quantized collaborative filtering.

1. Below rating/preference data are collectively denoted rating data.
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taxonomy is to design new loss functions for recommenda-
tion models, such as the Bayesian Personalized Ranking
(BPR) loss [22], [23], Gravity Regularizer [24], [25], [26],
Weighted Approximate-Rank Pairwise (WARP) loss [27],
Ranking-based implicit regualrizer [28], CliMF [29], Sam-
pled Softmax [3]. The second taxonomy is to design prefer-
ence functions, which are based on dot product, euclidean
distance [1], multilayer perception [30], or cosine similar-
ity [3]. The final taxonomy is to model feature interaction,
whose representative models include PNN [31], Deep&-
Cross [32], Wide&Deep [33], XDeepFM [7] and GCN based
models [34], [35]. In spite of the recent advance of recom-
mender systems, MF with the advanced loss functions plays
an important part in collaborative filtering, due to its com-
petitive recommendation accuracy and superior computa-
tional efficiency.

2.2 Maximum Inner Product Search

The MIPS problem has been studied for many years and
attracts much renascent attention recently. The challenge of
the MIPS problem is that the inner product violates the basic
axioms of a metric, such as triangle inequality and minimal-
ity. Several works try to transform MIPS to nearest neighbor
search (NNS) approximately [10], [36] or exactly [11], [12],
[37]. Note that if the database vectors are of the same norm,
MIPS is equivalent to NNS. Therefore, the key idea of the
transformation lies in augmenting database vectors to ensure
them an (nearly) identical norm. The differences of these
works also include the transformation of query vectors, such
as ensuring their norm identical to database vectors [12], [37]
or keeping them unchanged [11], [36]. Though scaling query
vectors does not affect the performance of retrieval, it leads
to different distortion errors [12]. Following the transforma-
tion, a bulk of algorithms can be applied for ANN search,
such as euclidean Locality-Sensitive Hashing [38], Signed
Random Projection [36], PCA-Tree [11], Hierarchical K-
means trees [1], [39], [40]. Alternatively, MIPS can be acceler-
ated by branch and bound algorithms with the metric
tree [13] and clustering [41], by the threshold algorithms [42],
or an attribute pruning-based algorithms [43].

Different from these works, we study the MIPS problem
from the perspective of quantization, and unify quantiza-
tion with the learning of latent factors. Therefore, there is
no need of transforming MIPS to NNS any more. In fact,
the proposed algorithm can be integrated with these
advanced techniques for approximated MIPS. Several exist-
ing works also studied quantization-based MIPS by
exploiting additive nature of inner product, such as addi-
tive quantization [44], composite quantization [45] and
residual quantization [46]. However, they belong to alter-
native quantization to product quantization, without spe-
cific consideration of the problems of the inner product.
Another work about quantization-based MIPS extended
PQ from the euclidean distance to the inner product [21].
However, they only took some query (user) latent factors
as held-out samples for training, and did not take rating
data into consideration. Therefore, it is totally different
from our settings, where rating data is taken as input, and
quantization is unified with the learning of latent factors of
both users and items.

2.3 Hashing-Based Collaborative Filtering

Hashing-based collaborative filtering learns hash codes
from rating data and (or) side information. In other words,
they are data-dependent, in contrast data-independent
hashing such as L2LSH [14] and MinHash [8], [47], [48].
Hashing-based collaborative filtering can be organized into
two categories: two-stage hashing and discrete hashing.

Two-stage hashing methods separate binarization from
the learning of latent factors. For example, Zhou and Zha
utilized iterative quantization (ITQ) to learn binary codes
from user/item latent factors, which are learned from
matrix factorization [15]. In order to ensure hash codes as
compact as possible, a decorrelated constraint was imposed
over latent factors before quantization [49]. As observed
by [16], quantization results in the loss of magnitude infor-
mation of latent factors, so existing methods only preserve
similarity rather than the inner product between the user
and the item. Therefore, they proposed to impose a constant
feature-norm constraint on latent factors, and then quan-
tized magnitude and similarity separately.

Discrete hashing methods aim to reduce large quantiza-
tion errors from which the two-stage hashing methods suf-
fer. For example, Zhang et al. proposed to directly learn
binary codes for users and items in matrix factorization by
cyclic coordinate descent [17]. To ensure hash codes infor-
mative and compact, the balanced and decorrelated con-
straints were imposed. In order to adapt from rating data
(explicit feedback) to implicit feedback, Zhang et al. pro-
posed to optimize pairwise ranking loss between each
user’s interacted items and other items [50]. Lian et al. pro-
posed a unified framework for both explicit and implicit
datasets by introducing an interaction regularization [18],
[51] and further incorporated auxiliary information by a
regression-based method.

Different from these works, the proposed algorithm
learns compact codes for collaborative filtering from the
perspective of quantization. As observed from experimental
results, this leads to reduction of quantization errors and
substantial improvements of recommendation accuracy.

3 PRELIMINARY

Before introducing pQCF, we first introduce some notations
and review some background. Denote M the number of
users, N the number of items, K code length, D the dimen-
sion of each subspace, F the number of subspaces, C the
number of clusters within each subspace. Note that the
number of clusters across subspaces is assumed identical.
The code length K is distinguished from k, the number of
items to be recommended. Let i index a user, j index an
item, c index a cluster, f index a subspace. Denote RR a user-
item rating matrix, and denote ppi; qqj 2 RK latent factor of a
user i, an item j, respectively. Other notations are intro-
duced in the context.

3.1 Matrix Factorization for Top-k Item
Recommendation

Recommender system first concentrated on rating predic-
tion based on rating data. Many algorithms have been
developed particularly at the time of Netflix prize. Item
recommendation has been started in implicit feedback
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[22], [24], since the algorithms tailored for rating prediction
perform poorly in this case. One simple yet effective method
is weighted regularized matrix factorization. In this model,
missing values are considered zero-rated, but zero ratings
are assigned a much lower confidence than observed ones.
In fact, a regularizer is imposed to penalize non-zero estima-
tion of preference scores [25]. Interestingly, a similar model
has also been proposed for explicit feedback [52], where
zero ratings are considered prior on missing values. Since
this model is suitable for item recommendation based on
both explicit and implicit feedback, we choose it as our base
model and dub itMF. Formally, MF optimizes the following
objective function

min
ppi;qjqj2RK

X
i;j

wijðrij � ppTi qqjÞ2 þ �ðkPPk2 þ kQQk2Þ; (1)

where wij equals to aþ 1ða� 0Þ if rij is observed and 1 oth-
erwise. PP 2 RK�M is a matrix stacking user latent factors by
column and QQ 2 RK�N is a matrix stacking item latent fac-
tors. The first part can be decomposed into a well-known rat-
ing prediction loss and a regularization term

P
ði;jÞ =2 VðppTi qqjÞ2.

3.2 Product Quantization

Product quantization is proposed for nearest neighbor
search. It decomposes feature space into the Cartesian prod-
uct of subspaces and performs k-means clustering in each
subspace. Each feature vector is represented by a short code
composed of cluster indexes in each subspace. The efficient
computation of distance between feature vectors based on
lookup tables enables faster nearest neighbor search. Below
we introduce product quantization for item feature vectors.
Denote item feature vector qq 2 RK as the concatenation of F
subvectors of equal length D, qq ¼ ½qq1; . . . ; qqf ; . . . ; qqF �. The
subvectors are quantized separately using F distinct quan-
tizers. Formally, the fth quantizer is a function hf mapping

a D-dimensional vector qqf 2 RD to a codeword in codebook
Vf , which is defined as Vf ¼ fvvfc jc 2 f1; . . . ; Cgg. The Carte-

sian product V ¼ V1 � � � � � VF is the set in which a codeword
vv 2 V is also formed by concatenating the F codewords :
vv ¼ ½vv1; . . . ; vvf ; . . . ; vvF �. The objective function of PQ is formu-
lated as follows:

min
V;dd

X
qq

X
f

kqqf � VV fddfk2: (2)

The cth column of VV f 2 RD�C corresponds to the cth code-
word. ddf is an one-hot vector, indicating to which codeword
qqf is assigned. dd ¼ ½dd1; . . . ; ddf ; . . . ; ddF � is a long binary vector,
comprising codeword assignments of all subspaces. This
objective function can be split into F independent subpro-
blems, each of which corresponds to a k-means problem.

User latent factors are similarly quantized into the Car-
tesian product codebook U ¼ U1 � � � � � UF with the same
settings. After that, the simple baseline for product quan-
tized collaborative filtering is ready. Notice that PQ was
improved by optimizing space decomposition [20], [53]
so it is intuitive to apply it for improving quantization.
However, optimizing space decomposition separately is
not reasonable, as axises are not aligned with each other
after independent rotation. This may lead to meaningless

inner product. The solution to this problem is introduced
in next section.

4 OPTIMIZED PRODUCT QUANTIZATION FOR

COLLABORATIVE FILTERING

To improve the baseline that simply applies PQ for indepen-
dently quantizing user latent factors and item latent factors,
we can jointly optimize quantization and space decomposi-
tion. According to [20], [53], optimal space decomposition is
important for ANN search, so it should be also important
for MIPS. As discussed, optimizing space decomposition
separately for users and items leads to unaligned axises, so
that it is meaningless to operate inner product between
them. To this end, we rotate the joint latent space with an
orthogonal matrix HH. Note that the preference scores do not
change with such a rotation. In particular,

r̂ij ¼ ðHHppiÞT ðHHqqjÞ ¼ ppTi HH
THHqqj ¼ ppTi qqj: (3)

Since Frobenius norm is unitarily invariant, rotating joint
latent space does not alter optimality. In other words, if
(PP;QQ) is an optimal solution of Eq. (1), (HPHP;HQHQ) is also
optimal with the same loss. Therefore, OPQ should be
adaptive to collaborative filtering based on the following
optimization:

min
Q;HH
kPP �HHT ~UB~UBk2F þ kQQ�HHT ~VD~VDk2F ; (4)

where Q ¼ f ~U~U; ~V~V ;BB;DDg. ~U~U and ~V~V are block diagonal, BB
comprises the codeword assignments of users and DD com-
prises the codeword assignments of items. ~V~V and DD are
defined as follows:

~V~V ¼
VV 1 0 � � � 0
0 VV 2 � � � 0
..
. . .

. ..
.

0 0 � � � VV F

2
6664

3
7775; DD ¼

dd11 dd12 � � � dd1N
dd21 dd22 � � � dd2N

..

. ..
. . .

. ..
.

ddF1 ddF2 � � � ddFN

2
66664

3
77775;

(5)

~U~U and BB are similarly defined and are not shown here.
Given the orthogonal matrix HH, the optimization prob-

lem is the same as PQ. Given ~U~U; ~V~V ;BB;DD, the optimization
with respect toHH is equivalent to the following problem

max
HH

trace
�
HHT ð~UUBBPPT þ ~VVDDQQT Þ

�
;

s:t:HHTHH ¼ II and HHHHT ¼ II:

(6)

This is the Orthogonal Procrustes problem [54] and there
is a closed-form solution: first apply SVD on ~UUBBPPT þ
~VVDDQQT ¼ XSYXSY T and then let HH ¼ XXYY T . The overall optimi-
zation alternates between learning HH and learning Q until
convergence. This algorithm is dubbed as OPQ_CF. If only
item latent factors are quantized via OPQ, this turns to an
asymmetric OPQ, dubbed as OPQ_CF+. The optimal rotate
matrix from OPQ will multiply user latent factors, to align
them with items in the same space and enable valid inner
product between them.
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5 PRODUCT QUANTIZED COLLABORATIVE

FILTERING

Both OPQ_CF and PQ postprocess latent factors learned
from MF. Since PQ is based on euclidean distance, it is not
consistent with the inner product used for estimating the
preference scores. This causes that two items similarly pre-
ferred by some user may be distant from each other in the
euclidean space. Formally, the triangle inequality is vio-
lated. For example, denote pp ¼ ½1; 0� user latent factor, and
qq1 ¼ ½x; y1�; qq2 ¼ ½x; y2� latent factors of two items. The pref-
erence scores with these two items are the same, but dis-
tance between two items, jy1 � y2j, can be arbitrarily large.
It is intuitively feasible to exploit the euclidean distance [1],
[9] rather than the inner product to estimate the preference
scores. However, they deviate from the familiar MF frame-
work and can not benefit the existing MF based recom-
mender systems.

5.1 Loss Function

In this part, we will directly learn codebooks and assign-
ments from rating data instead of latent factors. To be spe-
cific, we propose product Quantized Collaborative Filtering
to integrate the learning of latent factors into quantization.
The partition of either users or items is not based on the
euclidean distance but the inner product preference. There-
fore, product quantization is extended from the euclidean
space to the inner product space. According to Eq. (4), quan-
tizers are defined as minimizing distortion error between PP

and HHT ~UB~UB, between QQ and HHT ~VD~VD. From another perspec-
tive, HHT ~VV ddj is a quantized representation of qqj, where ddj is
the jth column of DD. Then we can use quantized latent vec-
tors to estimate the preference score

r̂ij ¼
�
HHT ~UUbbi

�T
ðHHT ~VV ddjÞ ¼ bbTi

~UUT ~VV ddj

¼
X
f

ðUUfbbfi ÞT ðVV fddfj Þ:
(7)

The objective function of pQCF is then formulated by

min
U;V;BB;DD

X
i;j

wij

�
rij �

X
f

ðUUfbbfi ÞT ðVV fddfj Þ
�2

þ �
�X

f

kUUfk2F þ
X
f

kVV fk2F
�
;

(8)

where the terms in the second line act a regularizer to pre-
vent overfitting. U and V are the Cardesian product code-
books. In this objective function, it is worth noting that
rotating the joint latent space is implicitly achieved, and
explicit rotation does not take effect. Moreover, only inner
product is used so that there is no violation of triangle
inequality. Next we elaborate how to learn parameters.

5.2 Optimization

Codebooks and codeword assignments among different
subspaces are not independent, so that the learning of code-
books and codeword assignments can not be completed
separately for each subspace. This is also different from PQ
and OPQ. However, it is possible to iteratively learn the
codebooks and codeword assignments for each subspace.

Below we focus on the learning of parameters in the fth
subspace. Denote ~VV �f block diagonal with VV f excluded,
~UU�f block diagonal with UUf excluded, and let BB�f and DD�f

comprise the codeword assignments of all subspaces but
the fth. For simplifying notations, we introduce two new

variables: ssi ¼ ~U~U
�f
bb�fi and ttj ¼ ~V~V

�f
dd�fj . The preference

score r̂ij is simplified as r̂ij ¼ ssTi ttj þ ðUUfbbfi ÞT ðVV fddfj Þ. Without
confusion, the superscript f is dropped for further simplifi-
cation. The objective function is then rewritten as

min
UU;VV ;BB;DD

X
i;j

wij

�
rij � ssTi ttj � bbTi UU

TVV ddj

�2
þ �

�
kUUk2F þ kVV k2F

�
:

(9)

Here BB 2 f0; 1gC�M and DD 2 f0; 1gC�N are slightly abused
for referring codeword assignments in the fth subspace.
The columns of UU; VV 2 RD�C corresponds to codewords in
the fth subspace.

Due to the symmetric between UU and VV , between BB and
DD, we only derive the update rule for UU and BB. Let’s con-
sider how to update bbi for a user i first. Denoting ~qqj ¼ VdVdj,
expand the loss function and discard the terms irrelevant
to bbi

LðbbiÞ ¼ bbTi UU
T
�X

j

wij~qqj~qq
T
j

�
UUbbi � 2bbTi UU

T
X
j

wij~qqjrij

þ 2bbTi UU
T
�X

j

wij~qqjtt
T
j

�
ssi:

(10)

Since bbi is an one-hot vector, we can efficiently enumerate
all choices of bbi and choose the one with the minimal loss. If
the user i is assigned to the cth codeword, i.e., bic ¼ 1, the
loss Lic is defined as

Lic ¼uuT
c

�X
j

wij~qqj~qq
T
j

�
uuc � 2uuT

c

X
j

wij~qqjrij

þ 2uuT
c

�X
j

wij~qqjtt
T
j

�
ssi:

(11)

For concise, it can be rewritten in a matrix form,

Lic ¼ uuT
c
~QQWWi ~QQTuuc � 2uuT

c

�
~QQðwwi � rriÞ � ~QQWWiTTTssi

�
;

(12)

where WWi is a diagonal matrix with wwi on the diagonal and
TT 2 RðK�DÞ�N is amatrix stacking ttj by column. � operates ele-
ment-wise product between vectors. Based on the setting of

wij, ~QQWWi ~QQT and ~QQWWiTTT can be efficiently computed with a

simple trick [24]. For example, ~QQWWiTTT ¼ a ~QQiTT
T
i þ ~QQTTT ,

where ~QQi is a submatrix of ~QQ selected by rated items of the

user i. Be independent of the user i, ~QQTTT can be precomputed.

Similarly, ~QQWWi ~QQT ¼ a ~QQi
~QQT
i þ ~QQ ~QQT . Without considering

precomputing overhead, the time complexity of choosing

the assignment with the minimal loss for the user i is

OðViDK þ CD2Þ, whereVi is the number of her ratings. With

overhead, updating assignment for all users costs OðVDK þ
MCD2Þ, whereV ¼Pj Vj equals the number of ratings.

Regarding codebook generation, we also expand the loss
function and discard the terms irrelevant to UU . The objective
function with respect to UU is written as follows:
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L ¼
X
i

bbTi UU
T
X
j

ðwij~qqj~qq
T
j ÞUUbbi � 2

X
i;j

wijðrij � ssTi ttjÞbbTi UUT~qqj:

We can observe that it is difficult to derive the closed
form for updating the whole codebook once a time. It is
intuitive to derive the gradient of L with respect to UU
and to apply gradient descent for parameter learning.
However, we are more interested in deriving the closed-
form solutions for updating codebooks since there is no
need of parameter tuning. Let’s consider the loss func-
tion with respect to a codeword uuc, i.e., the cth column
of UU , which is defined as

LðuucÞ ¼ uuT
c

 X
i2Ec

X
j

wij~qqj~qq
T
j þ �II

!
uuc

� 2uuT
c

X
i2Ec

X
j

wijrij~qqj þ 2uuTc
X
i2Ec

X
j

wij~qqjtt
T
j ssi;

(13)
where Ec is the user set assigned to the cth codeword. For
concise, it is rewritten in a matrix form

LðuucÞ ¼ uuT
c

�X
i2Ec

~QQWWi ~QQT þ �II
�
uuc

� 2uuTc
X
i2Ec

�
~QQ
�
wwi � rri

�� ~QQWWiTTTssi

�
:

(14)

Computing the gradient of LðuucÞ with respect to uuc and set-
ting it to zero, we can get the optimal solution of uuc by solv-
ing the following system of linear equations,

 X
i2Ec

~QQWWi ~QQT þ �II

!
uuc ¼

X
i2Ec

~QQ
�
wwi � rri

�� ~QQWWiTTTssi:

(15)

Based on similar analysis, making use of precomputing
user-independent terms, the time complexity of updating
the codeword uuc is OðVI

cDK þD3Þ, where VI
c ¼

P
i2Ec

Vi.
Since

P
c V

I
c ¼

P
i Vi, the time complexity of updating all

codewords is OðVDK þ CD3Þ.
The overall algorithm is shown in Algorithm 1, where the

superscript f is put back for clear demonstration. In practice,
BB andDD are not stored as binary matrices but index matrices,
i.e., BB 2 CF�M and DD 2 CF�N , where C ¼ f1; . . . ; Cg. Then
line 4-7 and line 14 can be efficiently computed based on array
access via assignments. Algorithm 1 is based on block coordi-
nate descent, where subspaces correspond to blocks of
coordinates, so that the convergence can be theoretically
guaranteed [55]. Based on previous analysis, the overall time
complexity of updating codebooks and codeword assign-
ments in each iteration is OðVK2 þ ðM þNÞCKDÞ. Further-
more, since the updating rules are independent between
users, between items, and between codewords, parallel
update can be applied to speed up the training procedure.
Regarding memory cost for item recommendation, only BB
and DD as well as F lookup tables of size C � C are needed.
4FC2 bytes are used for storing lookup tables. Each one-hot
vector in BB and DD is converted into an integer of logC bits,
and then each user or each item has F integers in total. Then
1
8 ðN þMÞF logC will be used to compactly encodeBB andDD.

Since F ¼ K=D, 18 ðM þNÞK logC
D þ 4FC2 bytes are needed.

5.3 Relations With Product Quantization

Although pQCF is only based on the inner product, the sub-
space quantizer is still related to the k-mean quantizer. For
better discussion, we further denote AAi ¼ ~QQWWi ~QQT and
yyi ¼ ~QQðwwi � rriÞ � ~QQWWiTTTssi. Then Lic can be reformulated as
follows

Lic ¼ uuT
c AAiuuc � 2uuTc yyi

¼ ðuuc �AA�1i yyiÞTAAiðuuc �AA�1i yyiÞ � yyTi AA
�1
i yyi:

(16)

Since the last term is independent of uuc and can be dis-
carded when choosing the assignment with the minimal
loss. If we substitute UUbbi with ~ppi in Eq. (9), and optimize
Eq. (9) by alternating least square, then ~ppi ¼ AA�1i yyi. There-
fore, the assignment algorithm first learns user latent factor
and then assigns it to the nearest codeword in terms of
Mahalanobis distance. Therefore, pQCF unifies quantiza-
tion and the learning of latent factors in a seamless way.

Algorithm 1. pQCF

Input: Rating matrix RR, code length K, confidence of obser-
vations a.

Output: U;V; BB;DD
1 Initialize U;V; BB;DD ;
2 repeat
3 for f 2 f1; . . . ; Fg do
4 SS  ~U~U

�f
BB�f ; // OððK �DÞMÞ

5 TT  ~V~V
�f
DD�f ; // OððK �DÞNÞ

6 ~QQ VV fDDf ; // OðDNÞ
7 Cache ~QQ ~QQT and ~QQTTT ; //OðDKNÞ
8 for i 2 f1; . . . ;Mg do
9 Compute Lic; 8c 2 C;

// OðViDK þ CD2Þ
10 c

?  argmincLic ;

11 Update bbfi such that bfic? ¼ 1;
12 for c 2 C do // C ¼ f1; . . . ; Cg
13 Update uuf

c with Eq. (15);
// OðVI

cDK þD3Þ
14 ~PP  UUfBBf ; // OðDMÞ
15 Cache ~PP ~PPT and ~PPSST ; //OðDKMÞ
16 for j 2 f1; . . . ; Ng do
17 Compute Ljc; 8c 2 C;

// OðVjDK þ CD2Þ
18 c

?  argminc2CLjc ;

19 Update ddfj such that dfjc? ¼ 1;
20 for c 2 C do // C ¼ f1; . . . ; Cg
21 Update vvfc based on Eq. (15); // OðVJ

c DK þD3Þ
22 until Convergent;

Regarding codewords, pQCF defines a novel “average”
of group members,

uuc ¼
 X

i2Ec

AAi þ �II

!�1 X
i2Ec

yyi

!
: (17)

This is different from uuc ¼ 1
jEcj
P

i2Ec
AA�1i yyi in the k-means

quantizer except the case AAi ¼ AAj; 8i; j 2 Ec. Note that

the exception is impossible due to diversity of behavior

among users.
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6 QUANTIZED COLLABORATIVE FILTERING

If user latent factors are not quantized, inner product can be
also fast computed by table lookup, as shown in Fig. 2. Such
an asymmetric pQCF is dubbed as QCF. If we directly fol-
low the asymmetric PQ [19], the rating is estimated as

r̂ij ¼ h½pp1i ; . . . ; ppFi �; ½VV 1dd1j ; . . . ; VV
FddFj �i:

To improve generalization ability of this model, we let
user latent factors share across different subspaces. This
also helps to dramatically reduce the parameters in this
model. The estimated rating is then formulated by

r̂ij ¼ ppi;
X
f

VV fddfj

* +
: (18)

Interestingly, QCF now turns to additive quantization [44],
[45], but it is based on the inner product instead of the euclid-
ean distance. Moreover, different from these existing works
but similar to pQCF, codebooks are directly learned from rat-
ing data via optimizing the following objective function,

min
PP;V;DD

X
i;j

wij

�
rij � ppTi

X
f

VV fddfj

�2

þ �
�X

i

kppik2 þ
X
f

kVV fk2F
�
:

(19)

Given PP fixed, the optimization with respect to V and DD is
similarly achieved by iterating each codebook and its code-
word assignments. Regarding the fth codebook, its closed-
form update equation is very similar to pQCF as long as
setting ttj ¼

P
f 0 6¼f VV

f 0ddf
0

j and ssi ¼ ppi. In other words, vvc is
updated by solving the following system of linear equations, X

j2Hc

PPWWjPPT þ �II

!
vvc ¼

X
j2Hc

PP
�
wwj � rrj

�� PWPWjPPT ttj;

(20)

where Hc denotes the item set assigned to the cth codeword
of the current codebook. The loss of assigning item j to the
cth codeword is represented by

Ljc ¼ vvTc PPWWjPPTvvc � 2vvTc

�
PP ðwwj � rrjÞ � PPWWjPPT ttj

�
:

(21)

The codebook with the minimal loss is then assigned to the
item j. Following similar analysis, the time complexity of
updating F codebooks and its codeword assignment is
OðVFK2 þNFCK2Þ, after precomputing PPPPT .

Given V and DD fixed, PP is easily updated by cycling
through each user’s latent factor. In particular, denoting
qqj ¼

P
f VV

fddfj , the optimal ppi is obtained by solving the fol-
lowing system of linear equations,

ðQQWWiQQT þ �IIÞppi ¼ QQðwwi � rriÞ; (22)

where QQ is obtained by stacking qqj by column. The time
complexity of updating PP is OðVK2 þMK3Þ.

The overall algorithm is shown in Algorithm 2, where only
PPPPT and QQQQT are cached. The time complexity is OðVFK2

þ NFCK2Þ, being dominated by updating codebooks and
codeword assignments. This is around F times higher than
pQCF. Regardingmemory cost for item recommendation, only
PP , V and DD are required to store so that 1

8NF logC þ 4FCK þ
4MK byteswill be allocated.Note that itmay be notworth stor-
ing user preference scores of codewords in each codebook, par-
ticularly when FC � K, so it will consume slightly more time
than pQCF for item recommendation.

Algorithm 2. QCF

Input: Rating matrix RR, code length K, confidence of obser-
vations a.
Output: PP;V; DD

1 Initialize PP;V; DD ;
2 QQ zeros_like(PP );
3 for f 2 f1; . . . ; Fg do
4 QQ QQþ VV fDDf ; //OðNKÞ
5 repeat
6 Cache PPPPT ; // OðMK2Þ
7 for f 2 f1; . . . ; Fg do
8 TT  QQ� VV fDDf ; // OðNKÞ
9 for c 2 C do // C ¼ f1; . . . ; Cg
10 Update vvfc with Eq. (20);

// OðVJ
c K

2 þK3Þ
11 for j 2 f1; . . . ; Ng do
12 Compute Ljc; 8c 2 C;

// OðVjK
2 þ CK2Þ

13 c
?  argminc2CLjc ;

14 Update ddfj such that dfjc? ¼ 1;

15 QQ TT þ VV fDDf ;
16 Cache QQQQT ; // OðNK2Þ
17 for i 2 f1; . . . ;Mg do
18 Update ppi with Eq. (20); // OðViK

2 þK3Þ
19 until Convergent;

7 EXPERIMENTS

We evaluate the proposed algorithms (pQCF) from the
aspects of recommendation accuracy, sensitivity of parame-
ters, efficiency of item recommendation and visualization of
item latent factors.

7.1 Datasets

Since pQCF is suitable for both explicit feedback and
implicit feedback, we use 4 explicit datasets and 2 implicit

Fig. 2. Framework of quantized collaborative filtering.
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datasets for evaluation. The 4 explicit datasets are also
converted into implicit datasets when evaluating pQCF
against implicit feedback according to suggestions of prior
works [4], [22]. Table 1 summarizes statistics of these data-
sets. The datasets vary in the numbers of items and ratings,
the density and concentration. The Yelp dataset includes
users’ ratings for points of interest. The Amazon dataset is a
subset of customers’ ratings for Amazon books [56]. The
Netflix dataset is from the well-known Netflix Prize. The
rating scores of these three datasets are integers from 1 to 5.
The MovieLens dataset is from the classic MovieLens10M
dataset. The rating scores are from 0.5 to 5 with 0.5 granular-
ity. Following convention of evaluating CF algorithms, we
filter these four datasets such that users rated at least 20
items that were rated by at least 20 users. The implicit data-
sets include Gowalla and LastFM. The Gowalla dataset
includes users’ check-ins at locations. Because of low den-
sity, it is less strictly filtered such that users check-in at least
10 locations, which were checked in at least by 10 users. The
LastFM dataset is based on users’ play count of songs. Fol-
lowing [1], we include songs a user listened to at least 5
times as positive feedback.

7.2 Settings

For each user, we randomly sample his 80 percent ratings
as training set and the rest 20 percent as testing test. We fit
a model to the training set and evaluate it in the test set. In
case of explicit feedback, the model is fit to the explicit
training set, but evaluated against a converted implicit test
set from the explicit test set, which enables better computa-
tion of ranking-based metrics. We repeat 5 random splits
and report averaged accuracy metrics. The hyperpara-
meters of pQCF and baselines are tuned on a validation
set, which consists of 5 percent ratings of the training set.
QCF shares the hyperparameters with pQCF. Note that
pQCF and QCF can handle both explicit and implicit feed-
back without any modification except that the hyperpara-
meters may be different.

7.2.1 Metrics

The accuracy of recommendation is based on how well posi-
tively preferred items in the test set are ranked.2 We use
three widely-used metrics of ranking evaluation: Area
under ROC curve (AUC), Recall and Normalized Dis-
counted Cumulative Gain (NDCG). The cutoff k in Recall
and NDCG is set 50 by default.

7.2.2 Baselines

Regarding baselines, we mainly focus on hashing-based col-
laborative filtering and quantization-based methods. The
baselines of hashing-based collaborative filtering include:

� DMF [18], the state-of-the-art discrete hashing for
item recommendation, which can take both explicit
feedback and implicit feedback as inputs. The
parameter r for interaction regularization is tuned
within f10�6; 10�5; . . . ; 10�1; 1g, both a and b for the
decorrelated and balanced constraints are tuned
within f10�4; 10�3; . . . ; 101; 102g.

� DCF [17], the first discrete hashing for collaborative
filtering, which directly tackles a discrete optimiza-
tion problem, subject to the decorrelated and bal-
anced constraints. The parameters a and b for the
decorrelated and balanced constraints are tuned
within f10�4; 10�3; . . . ; 101; 102g.

� BCCF [15], is a two-stage hashing-based collabora-
tive filtering. It first solves matrix factorization with
a balanced regularization. It then uses ITQ [57] to
derive the binary codes. Following their suggestions,
the coefficient for the balanced regularization is
tuned within f0:01; 0:03; 0:05; 0:07; 0:09g.

� PPH [16], is a preference preserving hashing for col-
laborative filtering. PPH first solves matrix factoriza-
tion with constant feature norm, where preferences
can be well approximated by similarities. It then
binarizes latent factor into K-bit phrase codes and
quantizes 2-bit magnitude codes. The coefficient
for the constant feature norm is tuned within f0:01;
0:5; 1; 2; 4; 8; 16g.

� CollaborativeHashing, dubbed as CH, is a two-stage
method for learning binary codes [49]. CH first sol-
ves matrix factorization on the full-matrix, by treat-
ing all unrated items as zero-rated. Following [17],

we implement CH as argminUU;VV kRR� UUVV Tk2F ;
s.t. UUTUU ¼ mIIk; VV

TVV ¼ nIIk. CH then binarizes UU
and VV based on the sign function.

The quantization-based methods include:

� PQ [19], directly quantizes latent factors of both
users and items which are learned from matrix fac-
torization according to Eq. (1).

� OPQ_CF, is the proposed variant of OPQ [20] for col-
laborative filtering, introduced in Section 4.1.

� OPQ_CF+, is an asymmetric OPQ_CF, which only
quantizes item latent factors, but rotates user latent
factors with the optimal rotation matrix returned
by OPQ.

TABLE 1
Data Statistics

Datasets Yelp Amazon Netflix MovieLens Gowalla LastFM

#users 18,454 35,736 429,584 69,838 29,858 357,847
#items 14,670 38,121 17,764 8,939 40,988 156,122
#ratings 869,126 1,960,674 99,884,887 9,983,739 1,027,464 16,893,651
Density 3.21e-03 1.44e-03 1.31e-02 1.60e-02 8.40e-04 3.02e-04
Concn. 23.25% 22.56% 59.43% 47.54% 29.15% 81.47%

Concentration (Concn.) indicates rating percentage on the top 5% most popular items [1].

2. In explicit datasets, items with ratings greater than or equal to 4
are considered positively preferred.
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The source code of the proposed algorithm and baselines
are released in the Github repository.3 The code length of
the baselines together with the proposed pQCF is set to 64
by default. Each subspace of these quantization-based
methods is of 8 dimensions, and clustered into 256 clusters
following Jegou’s suggestion [19]. The confidence parame-
ter a of ratings is only tuned for matrix factorization in the
validation set within f5; 10; 25; 50; 100; 250; 500g. Although
the prior work [21] also studied quantization-based MIPS, it
is unfair to compare it with ours since their settings are dif-
ferent, as discussed in related work. Hence, it is not consid-
ered as one of quantization-based baselines.

7.3 Comparison With Baselines

Table 2 shows recommendation accuracy in terms of
Recall@50, NDCG@50 and AUC for the 4 explicit datasets,
where SL-Prior [52] bounds QCF and pQCF from the above.
We have the following observations.

First, pQCF significantly outperforms the best hashing-
based collaborative filtering by up to 78.7 percent in
NDCG, 86.2 percent in Recall and 11.8 percent in AUC in
the four explicit datasets. This implies large quantization
errors of binarized latent factor models. Though directly
learning hash codes from rating data could reduce quanti-
zation errors of binarization, this task is very challenging
due to involving combinational optimization. Quantiza-
tion-like algorithms can lead to significant reduction of
quantization errors and substantial improvements of rec-
ommendation accuracy.

Second, pQCF shows up to 12.3, 9.8 and 2 percent
improvements of NDCG, Recall and AUC over PQ. This
indicates direct application of product quantization is sub-
optimal, since PQ is based on the euclidean distance while
the preference score is estimated by the inner product. It is
also observed that pQCF is superior to OPQ_CF and that
pQCF can bring larger improvements in the denser datasets.
Therefore, unifying quantization and the learning of latent
factors benefits further reduction of quantization errors.

Third, OPQ_CF is consistently better than PQ. The
improvements are up to 6.4 percent in NDCG, 5.5 percent in
Recall and 1.45 percent in AUC. This shows that rotating
joint latent space indeed helps reduce quantization errors,
as concluded in [20].

Forth, QCF outperforms pQCF by up to 13.4 percent in
NDCG, 10.9 percent in Recall and 0.92 percent in AUC, and
OPQ_CF+ outperforms OPQ_CF by up to 13.9 percent in
NDCG, 11.9 percent in Recall and 1.28 percent in AUC. This
indicates only quantizing item latent factors further reduces
the quantization errors and improves recommendation
performance.

Finally, when re-ranking not applied, performance degra-
dation due to quantizing item latent factors is 2.6 percent in
NDCG, 2.2 percent in Recall and 0.23 percent inAUC on aver-
age. Such performance degradation is indeed negligible.

Table 3 shows recommendation accuracy for the 6 implicit
datasets, 4 of which are converted from explicit datasets. Note
that these results can not be compared against that of explicit
feedback, since the data set is not of the same size. According
to this table, we have similar observations, even in the 2 real
implicit feedback datasets.Note that implicit feedback datasets
are much sparser than explicit feedback, so recommendation
based on implicit feedback is more challenging. Moreover, the
LastFM dataset shows high concentration, indicating more
than 81 percent plays concentrate on the top-5 percent most
popular songs. The recommendation in the LastFM dataset is
much more difficult. However, pQCF still works well, show-
ing 60.9 percent improvements relative to the best hashing-
based collaborative filtering and 15.6 percent improvements
relative to PQ in terms of NDCG. Performance degradation of
recommendation is 3.1 percent in NDCG and 2.5 percent in
Recall on average. This demonstrates the power of the pro-
posed algorithms.

7.4 Convergence

Given any initialization of codeword assignments, both
pQCF and QCF can be convergent in theory according
to [55]. However, similar to k-means, they are sensitive to
initialization. The empirical results of convergence in the
MovieLens dataset are shown in Fig. 3. It is clear that even

TABLE 2
Comparison With the State-of-the-Art on 4 Explicit Feedback Datasets in Terms of NDCG@50, Recall@50 and AUC (�100)

Dataset PPH BCCF DCF CH DMF PQ OPQ_CF pQCF OPQ_CF+ QCF SL-Prior

NDCG@50
Yelp 0.80	 0.04 1.78	 0.04 1.46	 0.03 3.43	 0.07 6.03	 0.07 9.75	 0.06 10.37	 0.11 10.77	 0.12 11.09	 0.07 11.65	 0.11 11.81	 0.11
Amazon 0.62	 0.02 3.60	 0.03 1.56	 0.03 5.00	 0.05 7.36	 0.05 8.94	 0.06 9.42	 0.05 10.05	 0.11 10.73	 0.08 11.38	 0.06 12.45	 0.06
MovieLens 2.75	 0.03 5.67	 0.02 7.54	 0.12 7.23	 0.12 26.41	 0.11 34.42	 0.11 36.11	 0.09 38.52	 0.06 39.79	 0.15 42.41	 0.05 42.57	 0.08
Netflix 1.81	 0.01 4.57	 0.01 5.24	 0.06 6.50	 0.12 19.59	 0.05 28.77	 0.06 29.99	 0.06 32.28	 0.02 34.11	 0.11 36.59	 0.02 36.63	 0.01

Recall@50

Yelp 1.84	 0.07 4.17	 0.11 3.44	 0.08 7.71	 0.07 11.64	 0.15 19.99	 0.18 21.10	 0.20 21.67	 0.27 22.26	 0.20 23.02	 0.21 23.24	 0.23
Amazon 1.24	 0.03 6.50	 0.03 3.07	 0.10 9.21	 0.09 13.62	 0.10 17.08	 0.13 17.85	 0.15 18.63	 0.16 19.94	 0.17 20.61	 0.12 22.24	 0.12
MovieLens 4.38	 0.05 7.33	 0.03 11.74	 0.13 10.46	 0.16 38.51	 0.06 48.02	 0.07 50.03	 0.05 52.43	 0.08 54.06	 0.11 56.39	 0.07 56.67	 0.05
Netflix 2.33	 0.02 4.63	 0.01 6.88	 0.06 7.37	 0.15 23.58	 0.07 34.89	 0.05 36.01	 0.04 38.29	 0.02 40.30	 0.07 42.47	 0.01 42.50	 0.02

AUC

Yelp 67.51	 0.23 85.41	 0.08 77.25	 0.46 77.37	 0.15 73.75	 0.11 90.84	 0.04 91.51	 0.03 91.75	 0.08 92.47	 0.08 92.45	 0.09 92.58	 0.09
Amazon 69.49	 0.11 81.39	 0.07 82.48	 0.20 83.39	 0.10 88.50	 0.04 93.27	 0.02 93.98	 0.04 94.31	 0.05 95.01	 0.04 95.14	 0.02 95.46	 0.03
MovieLens 74.09	 0.19 74.76	 0.03 82.37	 0.05 68.36	 0.13 90.25	 0.05 93.97	 0.05 95.33	 0.03 95.85	 0.02 96.05	 0.03 96.35	 0.02 96.55	 0.02
Netflix 71.90	 0.11 70.03	 0.02 82.25	 0.05 67.24	 0.17 85.62	 0.03 94.23	 0.01 94.43	 0.01 95.20	 0.01 95.64	 0.05 96.07	 0.01 96.31	 0.01

3. https://github.com/DefuLian/recsys
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with a random initialization, they can be convergent, but to
a higher loss and lower accuracy of recommendation than a
good initialization. Moreover, initialized by OPQ_CF, both
algorithms further reduce loss and improve recommenda-
tion accuracy. This implies effectiveness of the proposed
optimization algorithms.

7.5 Sensitivity Analysis

The confidence parameter a mainly depends on the density
of datasets, and has been well studied in prior works [24],
[52]. Here, we focus on the sensitivity to code length. The
results of study in the Amazon dataset and the Yelp dataset
are shown in Fig. 4. The accuracy of recommendation grows
with the increase of code length in the Amazon dataset
while it may show over-fitting in the Yelp dataset when the
code length is larger than 128. The may be because far more
factors are required to determine users’ purchase of books
than users’ choice of restaurants, hotels and other points of
interest. This is evidenced by larger singular values in the
amazon dataset than the Yelp dataset at the same positions.

7.6 Top-k Recommendation

Although pQCF is significantly superior to the best hashing
based collaborative filtering, it is unknown how much

efficiency should be traded off. As discussed before, the pref-
erence score using quantized vectors can be efficiently com-
puted by a few additions given precomputed lookup tables.
The preference score using binarized vectors is also efficiently
computed via hamming distance. We record their speedup
and relative recall of top-k recommendation to real-valued
vectors learned from MF. Following [19], [58], we re-rank the
top-k items with accurate preference scores. The results in
the LastMF dataset with the largest number of items are
shown in Fig. 5, where k is varied from 200 to 2,000. It is easy
to observe that pQCF significantly outperforms DMF with

TABLE 3
Comparison With the State-of-the-Art on 6 Implicit Feedback Datasets in Terms of NDCG@50, Recall@50 and AUC (�100)

Dataset PPH BCCF DCF CH DMF PQ OPQ_CF pQCF OPQ_CF+ QCF WRMF

NDCG@50

Yelp 1.34	 0.11 2.02	 0.02 3.72	 0.05 2.42	 0.03 6.77	 0.09 8.67	 0.11 9.23	 0.13 9.42	 0.08 9.83	 0.13 10.26	 0.15 10.53	 0.17
Amazon 0.89	 0.06 3.49	 0.08 4.40	 0.03 4.16	 0.05 7.96	 0.07 8.68	 0.03 9.17	 0.06 9.49	 0.09 10.33	 0.08 10.74	 0.02 11.68	 0.05
MovieLens 3.27	 0.57 3.77	 0.03 4.14	 0.07 5.36	 0.08 24.08	 0.11 29.45	 0.14 30.91	 0.11 32.29	 0.06 33.61	 0.05 35.82	 0.04 35.54	 0.01
Netflix 3.02	 1.08 2.24	 0.01 0.25	 0.01 5.45	 0.10 18.55	 0.15 24.51	 0.07 26.11	 0.03 27.87	 0.02 29.73	 0.03 31.46	 0.02 31.50	 0.01
Gowalla 1.45	 0.10 6.45	 0.07 6.77	 0.12 4.18	 0.07 11.36	 0.14 11.96	 0.09 12.67	 0.08 13.63	 0.08 13.49	 0.08 14.77	 0.06 15.58	 0.07
LastFM 1.08	 0.10 3.54	 0.01 3.03	 0.22 1.91	 0.02 14.69	 0.06 20.44	 0.10 21.89	 0.24 23.63	 0.04 24.64	 0.07 26.35	 0.02 27.28	 0.02

Recall@50

Yelp 3.15	 0.21 4.62	 0.04 8.64	 0.09 5.45	 0.08 14.98	 0.16 17.82	 0.20 18.87	 0.13 19.03	 0.12 19.87	 0.19 20.40	 0.19 20.87	 0.23
Amazon 1.86	 0.14 6.43	 0.12 8.60	 0.06 7.63	 0.08 15.13	 0.13 16.43	 0.07 17.24	 0.12 17.53	 0.15 19.04	 0.09 19.41	 0.08 20.83	 0.10
MovieLens 6.29	 0.86 4.95	 0.03 6.93	 0.03 7.92	 0.17 38.83	 0.14 43.75	 0.09 45.58	 0.08 47.26	 0.05 48.84	 0.09 51.05	 0.04 50.81	 0.04
Netflix 4.03	 1.56 2.12	 0.00 0.34	 0.01 6.19	 0.12 24.47	 0.24 30.46	 0.05 32.17	 0.02 34.05	 0.04 36.03	 0.04 37.75	 0.02 37.69	 0.02
Gowalla 3.20	 0.22 12.83	 0.09 14.14	 0.20 8.37	 0.14 21.17	 0.22 22.24	 0.21 22.91	 0.09 23.69	 0.17 24.15	 0.10 24.92	 0.13 25.92	 0.14
LastFM 1.92	 0.20 5.53	 0.02 5.19	 0.37 3.13	 0.02 22.04	 0.08 28.37	 0.07 30.09	 0.07 32.01	 0.04 33.35	 0.05 34.86	 0.01 35.89	 0.02

AUC

Yelp 84.45	 0.74 88.92	 0.07 92.37	 0.05 74.88	 0.38 92.66	 0.05 89.16	 0.06 90.07	 0.12 89.96	 0.07 90.88	 0.10 90.46	 0.06 90.76	 0.08
Amazon 79.66	 1.17 81.96	 0.05 92.25	 0.03 81.14	 0.20 91.83	 0.05 91.80	 0.04 92.69	 0.08 92.78	 0.08 93.67	 0.05 93.70	 0.02 94.15	 0.03
MovieLens 57.35	 6.13 68.16	 0.01 88.53	 0.42 66.60	 0.15 94.24	 0.02 93.26	 0.04 94.28	 0.03 94.97	 0.05 95.01	 0.02 95.42	 0.02 95.55	 0.04
Netflix 57.58	 2.50 63.55	 0.02 72.30	 0.42 65.76	 0.43 92.93	 0.06 91.08	 0.01 92.44	 0.03 93.50	 0.01 93.70	 0.01 94.43	 0.01 94.59	 0.01
Gowalla 85.39	 1.42 89.75	 0.06 95.74	 0.03 84.43	 0.06 95.38	 0.05 95.62	 0.02 95.89	 0.05 96.16	 0.03 96.76	 0.02 96.76	 0.01 96.80	 0.02
LastFM 88.01	 0.07 87.68	 0.01 96.60	 0.04 77.66	 0.03 96.49	 0.01 94.97	 0.01 95.84	 0.01 96.48	 0.01 96.46	 0.01 96.90	 0.02 97.44	 0.00

Fig. 3. Illustration of convergence. opq_init indicates the algorithms are
initialized via OPQ_CF, and rand_init means random initialization.

Fig. 4. Sensitivity analysis of code length.

Fig. 5. Trade-off between efficiency and accuracy of top-k recommendation.
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comparable retrieval time. With re-ranking, pQCF achieves
negligible accuracy degradation in both Recall@100 and
Recall@50with 30+x speedup.

We also report the results of ANNOY4 in Fig. 5. ANNOY is
one of the best industrial ANN libraries [39]. ANNOY per-
forms better when using the euclidean distance. MIPS is trans-
formed into NNS according to [37]. The number of trees is
fixed to 50 and the number of nodes to inspect is varied from 7
to 15 percent of items. The results show that pQCF ismuch bet-
ter thanANNOYgiven the approximately same speedup ratio.
Due to highly accurate recommendation, pQCF can be further
integrated into ANNOY for reducing index size of ANNOY
and further accelerating top-k item retrieval in this library.

7.7 Visualization of Item Latent Factors

For better understanding why pQCF performs well, we
visualize the learned item factors by MF, pQCF, QCF and
DMF with the popular visualization tool t-SNE [59]. t-SNE
converts latent factors into two-dimensional vectors by pre-
serving cosine similarity between items. Then each item is
plotted in a two-dimensional space and labeled as a unique
color. The color of each item represents one of its genres,
which is selected as the least frequent genre of the item. We
finally choose 4 genres with a very small number of overlap
movies, and visualize them in Fig. 6. Obviously, in DMF,
the points of different genres are mixed with each other. In
contrast, in pQCF and QCF, the points are better separated
and clusters are formed to some extent. This validates the
superiority of the quantized methods to the binarized meth-
ods. MF gives the best visualization result, indicating quan-
tization reduces representation capacity.

8 CONCLUSIONS AND FUTURE WORK

Weproposed product quantized collaborative filtering and its
variant to learn semi-structured latent factors for items (or
users) from rating data. Theywere efficiently optimized based
on block coordinate descent, whose time complexity is line-
arly proportional to the number of ratings. The algorithms
were evaluated against 6 real-world explicit or implicit data-
sets. The results showed that the proposed algorithms sig-
nificantly outperformed the state-of-the-art hashing-based
collaborative filtering with comparable retrieval time and just
a few extra memories. pQCF also showed higher recommen-
dation accuracy than one of the best ANN libraries with

comparable retrieval time, indicating that the proposed algo-
rithms lead to better trade-off between efficiency and accuracy
of top-k recommendation.

Awide range of future work can be explored. For example,
since we observed that ANNOY using the inner product met-
ric performed poor, it is very interesting to design new index
structures, such as inverted index and hierarchical 2-means
tree, for maximum inner product search. It is also interesting
to investigate deep quantized collaborative filtering and the
application of quantization for graph embedding. Finally, in
most cases, item recommendation should be quickly adaptive
to users’ interest evolving, so it is also worth studying online
quantized collaborative filtering.
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